Exceeding the solar cell Shockley–Queisser limit via thermal up-conversion of low-energy photons
نویسندگان
چکیده
Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for one sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.
منابع مشابه
Third generation photovoltaics
We review recent progress towards increasing solar cell efficiencies beyond the Shockley-Queisser efficiency limit. Four main approaches are highlighted: multi-junction cells, intermediate-band cells, hot carrier cells and spectrum conversion. Multi-junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediateband cells use one junction wi...
متن کاملLimit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion
Conversion of sunlight by photon-enhanced thermionic emission (PETE) combines a photonic process similar to photovoltaic cells, and a thermal process similar to conventional thermionic converters. As a result, the upper limit on the conversion efficiency of PETE devices is not the same as the Shockley– Queisser (SQ) limit that corresponds to the bandgap of the absorbing material, nor to the Car...
متن کاملPower conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator
Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less...
متن کاملThe generalized Shockley-Queisser limit for nanostructured solar cells
The Shockley-Queisser limit describes the maximum solar energy conversion efficiency achievable for a particular material and is the standard by which new photovoltaic technologies are compared. This limit is based on the principle of detailed balance, which equates the photon flux into a device to the particle flux (photons or electrons) out of that device. Nanostructured solar cells represent...
متن کاملThe effect of photonic bandgap materials on the Shockley-Queisser limit
The limiting efficiency of photovoltaic energy conversion was determined by Shockley and Queisser using the theory of detailed balance, which described the balance between absorption and emission of photons. However, when a material is placed on top of a solar cell that modifies the transmission of photons (e.g., a photonic crystal), both the absorption and emission of photons are modified. Her...
متن کامل